Правильное охлаждение комптьютера

Этот материал написан посетителем сайта, и за него начислено вознаграждение.

Как эффективно охладить комплектующие внутри системного блока? Казалось бы, простой вопрос, над ответом на который не будет задумываться ни один опытный пользователь ПК, а уж тем более оверклокер или компьютерный энтузиаст.

Мол что тут думать: холодный воздух идет по низу, а горячий воздух устремляется вверх — простая физика из школьного курса, следовательно, надо организовать вдув (забор холодного воздуха) снизу, а выдув горячего воздуха сверху, холодный воздух должен пройти через все комплектующие, попутно охлаждая у их и становясь теплым, и «выброситься» из корпуса по классике через вентилятор, расположенный на задней стенке. Но это теория. Теория, которая не учитывает воздушные потоки, создаваемые вентиляторами и количество этих самых вентиляторов.

Правильное охлаждение комптьютера

Я же предлагаю рассмотреть более конкретную и приближенную к реальности ситуацию: как эффективно охладить комплектующие внутри системного блока, имея всего два вентилятора? Давайте рассмотрим как классические схемы охлаждения, так и нетипичные способы расположить вентиляторы в корпусе.

анонсы и реклама

Предлагаю перейти к тестовому стенду.

Тестовый стенд

В статье такого формата было решено немного изменить структуру описания тестового стенда.

Итак, в качестве «подопытного» корпуса был выбран Thermaltake View 31 TG, довольно часто появляющийся в наших экспериментах. Выбор данной модели в качестве «испытуемой» был обусловлен тем, что  View 31 TG позволяет практически как угодно расположить вентиляторы внутри себя, а благодаря съемной передней панели данный корпус позволяет имитировать модели с плохой и хорошей продуваемостью.

Правильное охлаждение комптьютера

За охлаждение комплектующих внутри корпуса отвечали два комплектных вентилятора Riing 14 LED Blue.

Участие этих вентиляторов в эксперименте обусловлено тем, что они создают достаточно мощный воздушный поток, относительно шума, исходящего от них.

И, собственно, мощный воздушный поток «раскроет» схему расположения вентиляторов, так как слабые вентиляторы смогли бы обеспечить достаточную мощность вдува или выдува и эксперимент можно было бы считать не достаточно честным и объективным.

Правильное охлаждение комптьютера

Прогревали корпус изнутри процессор AMD Ryzen 7 2700, разогнанный до частоты в 3.9 ГГц по всем ядрам, тепловыделение которого составило порядка 140 ватт, и видеокарта NVIDIA GeForce GTX 1060 c TDP около 120 ватт. За охлаждение процессора отвечала двухбашенная система охлаждение GELID Phantom, обзор и тестирование которой были проделаны в прошлой статье. Рекомендую к ознакомлению.

Тестирование проходило при комнатной температуре в 22 градуса. Температура поддерживалась сплит-системой. Прогрев комплектующих осуществлялся программой OCCT.

В качестве теста был выбран стресс-тест как видеокарты, так и процессора одновременно, AVX инструкции при этом были задействованы.

Каждый тестовый прогон длился чуть больше 15 минут, чтобы обеспечить практически максимально возможный нагрев комплектующих в созданных условиях.

Тест «пристрелочный»: тестирование без использования вентиляторов

Для начала было решено провести «пристрелочное» тестирование, которое заключалось в том, что комплектующие внутри закрытого корпуса будут нагреваться при естественной циркуляции воздушных потоков.

Смысл же этого тестирования заключался в том, чтобы выявить «эталонную» температуру, с которой мы в последующем будем сравнивать, чтобы определить, какая схема расположения вентиляторов покажет себя максимально эффективно.

В процессе тестирования горячие воздушные потоки будут выходить естественным путем через перфорационные отверстия на верхней крышке корпуса, а также «выбрасываться» через перфорацию в задней стенке при помощи башенного кулера GELID Phantom.

Были получены следующие результаты, с которыми вы можете ознакомиться во вложении.

Нагрев и скорость вращения (без вентиляторов)

Правильное охлаждение комптьютера
Правильное охлаждение комптьютера

Тест первый, схема первая: оба вентилятора на выдув, плохой забор воздуха спереди / хороший забор воздуха с передней стенки

Правильное охлаждение комптьютера

Прошу обратить внимание на расположение вентилятора сверху. Именно такое расположение вентилятора в верхней части корпуса является максимально эффективным решением, так как располагать вентилятор сверху в передней части корпуса не имеет никакого смысла, так как данное решение максимально нецелесообразно — зачем выбрасывыть наружу еще холодный воздух? Также сразу хочется отметить, что в данной статье не будет схем со «вдувом сверху», так как мы намерены проверить реальные варианты схем, а не рассматривать всевозможные глупости неопытных пользователей.

Итак, при плохом заборе воздуха (закрытой передней стенке) нам удается выиграть практически 10 градусов по температуре процессора относительно корпуса без вентиляторов. Видеокарта становится холоднее на 4 градуса. А скорость вращения вентиляторов на башне сократилась на 100 оборотов. Компьютер стал заметно тише и холоднее.

Прошу ознакомиться с полученными результатами

Нагрев и скорость вращения: два вентилятора на выдув (плохой забор воздуха)

Правильное охлаждение комптьютера
Правильное охлаждение комптьютера

При хорошем заборе воздуха (открытой передней панели) удается выиграть дополнительный градус по температуре процессора. Скорость вращения процессорных вентиляторов несколько сокращается. Компьютер становится более шумным из-за худшей звукоизоляции.

Прошу ознакомиться с более подробными результатами во вложении.

Нагрев и скорость вращения: два вентилятора на выдув (хороший забор воздуха)

Правильное охлаждение комптьютера
Правильное охлаждение комптьютера

Тест дополнительный, схема упрощенная: один вентилятор на выдув (закрытая передняя панель)

Далее предлагаю выяснить, насколько необходимо иметь два вентилятора на выдув горячего воздуха. Для этого, разумеется, я убираю вентилятор, находящийся над процессорным кулером.

Данное действие привело к чуть заметному ухудшению результатов относительно схемы с двумя вентиляторами на выдув. Температура процессора поднялась на 1 градус, видеокарта же также прогрелась на 1 градус больше. Скорость вращения вентиляторов возросла.

Прошу ознакомиться с более подробными результатами во вложении.

Нагрев и скорость вращения: один вентилятор на выдув (плохой забор воздуха)

Тест второй, схема вторая: два вентилятора на вдув, закрытая и открытая передняя панель

Теперь посмотрим, на сколько эффективными себя покажут оба вентилятора, расположенные спереди корпуса. Выдув горячего воздуха будет осуществляться силами вентиляторов башенного кулера, а также естественным путем через перфорацию в верхней части корпуса.

С закрытой передней панелью данная схема расположения вентиляторов оказалась абсолютно неэффективной. Температура процессора поднялась на два градуса относительно схемы без использования корпусных вентиляторов. Но видеокарту удалось охладить на пару градусов.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: два вентилятора на вдув (закрытая передняя панель)

Открытая передняя панель дает настоящий «глоток свежего воздуха» комплектующим. Относительно корпуса, лишенного вентиляторов, температура процессора снизилась на 9 градусов.

Данная схема расположения показала себя существенно лучше, та же компоновка вентиляторов с закрытой панелью, но проигрывает двум вентиляторам на выдув, работающими даже с закрытой передней панелью.

Превосходство над одним вентилятором на выдув на 0,3 градуса — погрешность.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: два вентилятора на вдув (открытая передняя панель)

Тест третий, вариации «классических» схем: один вентилятор на вдув, один на выдув (разное расположение вентилятора на вдув спереди корпуса), открытая и закрытая передняя панель

Теперь мы переходим к «классическим» схемам, объединенным в единый тест, так как все они предусматривают расположение одного вентилятора на вдув и одного на выдув.

Начнем с наиболее классического варианта, когда мы имеем вентилятор на вдув, расположенный внизу передней части корпуса и обдувающий жесткие диски, вентилятор на выдув располагается на задней стенке корпуса. Передняя панель корпуса закрыта.

Такое «классическое» расположение вентиляторов проигрывает по своей эффективности вариантам с двумя вентиляторами на выдув с точки зрения температуры процессора. Однако стоит заметить, что при таком расположении вентиляторов жесткие диски внутри системного блока охлаждаются куда лучше, чем в том варианте, когда в корпусе нет вентиляторов на вдув вовсе.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: «классическое» расположение вентиляторов (вентилятор на вдув снизу, передняя панель закрыта)

А теперь все то же самое, но с открытой передней панелью.

Температура ЦП снизилась до уровня двух вентиляторов на выдув с закрытой передней панелью. Температура жестких дисков опустилась до минимального значения.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: «классическое» расположение вентиляторов (вентилятор на вдув снизу, передняя панель открыта)

Читайте также:  Лучшие ноутбуки бренда hp: рейтинг, топ 10, обзор 2018

Переставляем вентилятор на вдув выше корзины с жесткими дисками и закрываем переднюю панель корпуса.

Определенно, данная схема расположения не имеет абсолютно никакого смысла, так как температура процессора стала даже выше, чем с одним вентилятором на выдув. Но стоит заметить, что при таком расположении. 

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: «классическое» расположение вентиляторов (вентилятор на вдув сверху, передняя панель закрыта)

Сохраняем расположение вентиляторов и отрываем переднюю панель корпуса.

Температура процессора оказалась средней между двумя вентиляторами на выдув с закрытой крышкой и с открытой крышкой. Температура видеокарты осталась примерно на том же уровне. Эффективность охлаждения корзины с жесткими дисками определенно снизилась.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: «классическое» расположение вентиляторов (вентилятор на вдув сверху, передняя панель открыта.

Заключение

В заключении напрашиваются как очевидные для многих, так и несколько не очевидные выводы: первое, передняя панель с боковой перфорацией ухудшает охлаждение комплектующих, выбирайте корпуса с прямым забором воздуха с передней части корпуса; второе, наиболее сбалансированной показала себя «классическая» схема с вентилятором, расположенным в нижней части передней панели, что помогает обдувать жесткие диски, однако, если в вашем ПК уже нет жестких дисков, то вам стоит задуматься о расположении двух вентиляторов на выдув; третье, выдув намного важнее, чем вдув — не зря даже в самые слабые и дешевые компьютеры ставят один вентилятор на выдув горячего воздуха из корпуса, хотя бы один вентилятор на выдув должен быть в вашем компьютере обязательно.

Дополнение

В тестировании не приняла участие схема продува, когда в корпусе имеется один вентилятор на вдув, забирающий воздух через перфорацию через нижнюю стенку корпуса, и один вентилятор на выдув, расположенный на верхней стенке корпуса над процессорным кулером.

Определенно, такая схема имеет место быть, но требует горизонтального расположения башни, чтобы башенные вентиляторы забирали холодный воздух снизу и помогали «выбросить» его вверх к выдувающему вентилятору.

  Наиболее эффективно данная схема  может себя показать в редких корпусах с горизонтальным расположением материнской платы, как, например, в легендарном SilverStone Raven RVX01:

А какая схема расположения вентиляторов в вашем системном блоке?

Этот материал написан посетителем сайта, и за него начислено вознаграждение.

Делаем компьютер тише. Обзор систем охлаждения, корпусов и термопаст

В объемных корпусах (Ultra-tower и Full-tower) проще организовать правильную циркуляцию воздуха, так как в них помещается больше вентиляторов и есть куда спрятать провода. Компании be quiet! и Fractal Design специализируются на производстве корпусов со звукоизоляцией. Удачные модели встречаются у SilverStone, Thermaltake, NZXT, Corsair, Nanoxia и Bitfenix.

Правильное охлаждение комптьютера Рис. 1. Результаты теста (англ.) звукоизоляции корпусов при работе стоковых вентиляторов с 50 и 100% скоростью.

1.1. Материал шумоизоляции корпуса

Шумоизоляция корпуса состоит из слоев битума и вспененного материала, которые устраняют вибрации. Слой флиса поглощает звуковые волны. Толщина слоев от 5 до 10 мм.

Правильное охлаждение комптьютера Рис. 2. Шумоизоляция корпуса компании be quiet!

1.2. Влияние окна в корпусе на шумоизоляцию

Тест корпуса на шумоизоляцию с окном без него

Судя по тесту корпуса Fractal Design Define R5 с глухой стенкой и с окном, окно не влияет на шумоизоляцию. Надо учитывать, что Fractal Design выпускает качественные корпуса. Если стекло тонкое и неплотно прилегает к корпусу, то шум возрастет.

2. Вентиляторы

Двигатель вентилятора состоит из ротора и статора (Рис. 3). Статор – неподвижная часть, в которую с помощью вала вставляется ротор. Подшипник фиксирует вал с заданной жесткостью. К ротору прикреплены лопатки, которые при вращении втягивают и выталкивают воздух. Разберемся в устройстве подшипников, так как шум возникает чаще всего из-за них.

2.1. Вентилятор с подшипником скольжения

Правильное охлаждение комптьютера Рис. 3. Устройство вентилятора с подшипником скольжения

Подшипник скольжения состоит из цилиндрического корпуса, в который вставлена втулка из антифрикционного материала. Внутри втулки вращается вал. Вал отделен от втулки заполненным смазкой зазором.

Правильное охлаждение комптьютера Рис. 4. Устройство подшипника скольжения

Небольшое расстояние между валом и втулкой и/или отсутствие смазки увеличивают трение, что затрудняет запуск вентилятора, повышает износ, энергопотребление и шум. Если зазор увеличить, вал начнет колебаться.

Правильное охлаждение комптьютера Рис. 5. Иллюстрация колебания вала внутри подшипника

При вертикальном положении вентилятора давление вала на втулку в разных точках различается. Вал со временем деформирует отверстие втулки – оно становится овальным. Усиливаются колебания вала и увеличивается шум. Вентиляторы с подшипником скольжения лучше использовать в горизонтальном положении, чтобы давление вала на втулку было равномерным.

2.2. Вентилятор с подшипником качения

Правильное охлаждение комптьютера Рис. 6. Устройство вентилятора с подшипником качения

Вентиляторы с подшипниками качения (шарикоподшипниками) стабильно работают в любой ориентации и меньше изнашиваются, потому что трение качения меньше трения скольжения.

Правильное охлаждение комптьютера Рис. 7. Устройство подшипника качения

2.3. Вентилятор с гидродинамическим подшипником

В вентиляторах с гидродинамическим подшипником вал вращается в слое жидкости, которая удерживается внутри втулки за счет возникающей во время работы разницы давлений. Это снижает трение и шум.

Правильное охлаждение комптьютера Рис. 8. Подшипник скольжения (слева) и гидродинамический подшипник

2.4. Вентилятор с магнитным центрированием

В конструкции с магнитным центрированием вал опирается на колпачок и удерживается на месте магнитами, поэтому вес крыльчатки меньше изнашивает подшипник.

Магнитное поле притягивает вал вниз, уменьшая его колебания, и позволяет устанавливать вентилятор под любым углом.

В нем нет шайб и колец, меньше трущихся частей, поэтому он долговечнее в сравнении с предыдущими моделями и не нуждается в смазке.

Правильное охлаждение комптьютера Рис. 9. Устройство вентилятора с магнитным центрированием

Тип подшипника Шум Ресурс (час.) Положение Цена
Скольжения Низкий 35 000 Горизонтальное Низкая
Гидродинамический Низкий 80 000 Любое Средняя
Качения Средний 90 000 Любое Средняя
Магнитное центрирование Низкий 150 000 Любое Высокая

2.5. Какой выбрать размер вентилятора

В корпусах используются вентиляторы разных диаметров: 120, 140, 200 мм и выше. Вентиляторы большого диаметра при одинаковой скорости вращения создают бо́льший воздушный поток (CFM) в сравнении с вентиляторами меньшего диаметра. Необходимый для отвода тепловой мощности W воздушный поток Q вычисляется по следующей формуле:

  • Q – воздушный поток;
  • W – рассеиваемая тепловая мощность;
  • ρ – плотность воздуха;
  • С – удельная теплоемкость воздуха;
  • T1 – T2 – разность температур внутри системного блока (T1) и в помещении (T2).

При температуре 20 °C и атмосферном давлении 101.325 кПа, плотность сухого воздуха равна 1.2 кг/м³, а удельная теплоемкость – 1 кДж/кг°C. После подстановки значений формула упрощается:

2.6. Сколько нужно вентиляторов

Чем больше, тем лучше. С увеличением количества вентиляторов можно понижать их скорость. При этом сохраняется продуваемость и снижается шум.

Условный пример: шесть вентиляторов на низких оборотах будут создавать такой же воздушный поток, как два-три вентилятора, которые работают на максимальной скорости и при этом шумят.

Правильное охлаждение комптьютера Рис. 10. Корпус Aerocool Scar Midi Tower с местами для шести вентиляторов 120 мм

2.7. Как расположить вентиляторы

От величины воздушного потока, который создают вентиляторы на входе и выходе, зависит давление в корпусе. Отрицательное давление возникает, когда выталкивается больше воздуха, чем всасывается (Рис. 11). В таком случае воздух вместе с пылью втягивается в корпус через все щели.

Рис. 11. Иллюстрация направления движения воздушных потоков при негативном давлении внутри корпуса

Нейтральное давление получается, когда на входе и выходе вентиляторы создают одинаковый воздушный поток (Рис. 12).

Рис. 12. Иллюстрация направления движения воздушных потоков при нейтральном давлении внутри корпуса

При положительном давлении всасывается больше воздуха, чем выталкивается (Рис. 13). В корпус попадает меньше пыли, так как воздух втягивается через отверстия с пылевым фильтром.

Рис. 13. Иллюстрация направления движения воздушных потоков при положительном давлении внутри корпуса

Выбирайте между нейтральным либо положительным давлением и периодически чистите внутренность корпуса и щели, через которые вентиляторы закачивают воздух. Вентиляторы на лицевой панели корпуса должны работать на вдув, а остальные – на выдув. Периодически очищайте пылевой фильтр блока питания, если корпус стоит на полу, а блок питания расположен внизу корпуса.

Читайте также:  Iphone 8 vs iphone xs – что лучше взять? сравнение смартфонов

Рис. 14. Правильная циркуляция воздуха внутри корпуса ПК напоминает «крест»: справа налево (от лицевой панели к задней) и снизу наверх.

В старых корпусах фильтров нет. Они продаются на Алиэкспресс (Рис. 15).

Рис. 15. Пылевые фильтры для вентилятора

2.8. Как монтировать вентиляторы

Если внутри корпуса много препятствий для потоков воздуха, нужно увеличить создаваемое давление, чтобы воздух смог их преодолеть. Для этого вентиляторы монтируют последовательно (Рис. 16). Если кабели убраны и препятствий для воздуха мало, применяется параллельный монтаж.

Расположение вентиляторов Давление воздуха Поток воздуха
Параллельное Не меняется Увеличивается
Последовательное Увеличивается Не меняется

Рис. 16. График зависимости давления воздуха от скорости воздушного потока при последовательном и параллельном расположении вентиляторов

2.9. На что монтировать вентиляторы

Чтобы убрать вибрации, вентиляторы монтируют с помощью резиновых антивибрационных креплений.

Рис. 17. Резиновые антивибрационные крепления для вентилятора

2.10. Как отрегулировать скорость вращения вентилятора

На Алиэкспресс продаются регуляторы оборотов для нескольких вентиляторов с питанием от разъема MOLEX или SATA.

Рис. 18. Регулятор оборотов для одного вентилятора Рис. 19. Регулятор оборотов для четырех вентиляторов с питанием от MOLEX. Устанавливается на переднюю панель корпуса. Размер 3.5 дюйма Рис. 20. Регуляторы оборотов для восьми вентиляторов с питанием от MOLEX или SATA. Устанавливаются внутри корпуса

2.11. Форма и количество лопастей

При увеличении количества лопастей с 6 до 12, скорость воздуха возрастает на 30% (pdf).

Рис. 21. График зависимости скорости воздуха от числа лопастей

Шума при этом становится больше (рис. 22).

Рис. 22. Зависимость создаваемого звукового давления от количества лопастей аэродинамического профиля (pdf, англ.)

3. Кулеры

Небольшой радиатор в боксовых кулерах (от англ. cooler – охладитель) не справится с теплоотводом при серьезной нагрузке, поэтому вентилятор будет работать на максимальной скорости и шуметь. Система охлаждения процессора подбирается под TDP (расчетную тепловую мощность): величину, показывающую, на отвод какой тепловой мощности он рассчитан.

Виды систем охлаждения:

Воздушная система состоит из радиатора и вентилятора. К водяной системе добавляется качающая воду помпа (Рис. 23).

Рис. 23. Принцип работы водяной системы охлаждения

Воздушные кулеры не уступают водяным системам при охлаждении ЦП (Рис. 24).

Рис. 24. Результаты теста (англ.) водяных и воздушных систем охлаждения ЦП

Топовый кулер на воздушном охлаждении (Cooler Master Wraith Ripper, Noctua NH-D15) стоит как «водянка» из среднего ценового диапазона с посредственными вентиляторами.

Рис. 25. Кулер Noctua NH-D15 Рис. 26. Кулер Сooler Master Wraith Ripper

Система охлаждения Источники шума Уход Срок службы
Воздушная Вентилятор Очистка радиатора от пыли Зависит от вентилятора
Водяная Вентилятор и помпа Замена жидкости, очистка радиатора и шлангов Зависит от вентилятора и помпы

У видеокарт TDP выше, чем у центрального процессора, поэтому на них ставят водяную систему охлаждения в ущерб тишине. Значения TDP для сравнения: процессоры Intel Core i9 Comet Lake (125 Вт), AMD Ryzen Threadripper 2 (250 Вт) и видеокарты RTX 3080 (320 Вт) и RTX 3090 (350 Вт).

4. Термопаста

Термопаста – вещество с высокой теплопроводностью (выражается в Вт/(м*К)), которое заполняет воздушные зазоры между охлаждаемой поверхностью и радиатором для эффективной передачи тепла.

Рис. 27. Термопаста заполняет воздушные зазоры

Вентилятор ЦП подключен к разъему 4-pin и его скорость автоматически меняется в зависимости от температуры процессора. Термоинтерфейс с низкой теплопроводностью (< 8 Вт/(м*K)) хуже передает тепло от процессора к радиатору, поэтому вентиляторы работают на повышенных скоростях.

Рис. 28. Результаты теста (англ.) термопаст в AIDA64 при 100% нагрузке процессора в течение одного часа. Топ 3: 1. Thermal Grizzly Kryonaut, 2. Noctua NT-H2, 3. Thermaltake TG-8

5. Из чего собрать «тихий» ПК

  • Корпус:
  • Система охлаждения ЦП:
  • Количество вентиляторов:
  • Диаметр вентиляторов:
  • Подшипник вентилятора:
  • магнитное центрирование;
  • гидродинамический подшипник.

Термопаста:

  • коэффициент теплопроводности > 8 Вт/(м*К).

Что еще сделать:

  • кабель-менеджмент;
  • регулярно чистить пылевые фильтры;
  • провести «тонкую» настройку вентилятора с помощью регулятора оборотов.

Мы определили источник шума и как его убрать. Узнали, какие бывают подшипники, где расположить и как смонтировать вентиляторы. Научились рассчитывать воздушный поток и создавать нужное давление в корпусе. Этого вполне достаточно, чтобы собрать малошумный компьютер с эффективной системой охлаждения.

Охлаждение процессора и видеокарты компьютера

Все подвижные части в компьютере или любой другой технике выходят из строя. Где-то отвалится лопасть, где-то будет гудеть подшипник, в некоторых случаях замена кулера чисто косметическая, например, хочется сделать подсветку или создать особый дизайн за счет необычных лопастей.

Перед заменой нужно избавится от старого кулера. Обычный корпусный вентилятор крепится на четырех винтах, в некоторых случаях это могут быть быстросъемные зажимы или специальные антивибрационные силиконовые винтики. Открутите крепления или отцепите быстросъемы.

Правильное охлаждение комптьютера

Между корпусом и вентилятором должна быть антивибрационная прокладка из силикона или резины, а также пылевой фильтр. Аккуратно снимите их – при долгой эксплуатации прокладки могут хорошо прилипнуть к корпусу, если они потрескались или уже успели рассыпаться, то их нужно заменить.

Лучше использовать антивибрационную прокладку, а не силиконовые винтики, она работает гораздо лучше и продлит время эксплуатации кулера. Если он надежно прижат к корпусу, то его вибрации не будут расшатывать ось. Силиконовые винтики не гасят вибрацию, а просто препятствуют ее передачи на корпус.

Один из вариантов исполнения антивибрационной резинки.

Отключить штекер питания от материнской платы тоже очень просто, достаточно немного потянуть за провод, защелки нет. Вариантов подключения может быть несколько – некоторые кулеры включаются в материнку, некоторые по MOLEX разъему напрямую к блоку питания. Отсоединить MOLEX очень легко, там тоже нет никаких защелок.

При установке вентилятора главное соблюдать направление воздуха. Обычно на корпусах забор идет спереди, а сзади выдув. Если вы установите неправильно, то эффективность охлаждения снизится в разы.

Правильное охлаждение комптьютера

Чтобы установить вентилятор на корпус, прикрутите его болтами в соответствующие отверстия или используйте силиконовые прижимы. Ничего тут сложно нет, все отверстия стандартизированы, нужно только выбрать вентилятор подходящего диаметра.

Стандартными для корпуса считаются кулеры 120 мм на переднюю сторону, а сзади используются 80 мм или 90 мм. Игровые корпуса обычно комплектуются вентиляторами 120 мм со всех сторон. Особые дизайнерские модели могут иметь оригинальную систему продува.

Обычно к таким корпусам идет комплект установленного охлаждения или хотя бы инструкция.

После того, как вы прикрутили на свое место кулер, его нужно подключить. На материнской плате есть разные разъемы, обычно это 3 PIN и 4 PIN. Если у вас вентилятор на 3 контакта, то его можно подключить к 3 PIN разъему и 4 PIN разъему, а вот если вы подключите 4 PIN кулер к 3 PIN разъему, то не сможете использовать для него систему регулировки через утилиту.

Правильное охлаждение комптьютера

Для этого есть отдельные приспособления – плата-концентратор или реобас.

Правильное охлаждение комптьютера

Правильное охлаждение комптьютера

Правильное охлаждение комптьютера

На самом деле, реобас – скорее элемент декора и практического применения у него нет. Современные платы сами регулируют скорость вращения всех вентиляторов в зависимости от температуры на модулях корпуса.

Но если вы захотите установить один из них, то ставятся они в отверстие под 3,5” устройства, а это чаще всего DVD-ROM. Учтите, что на современных игровых корпусах очень часто такого отверстия просто нет.

Охлаждение ПК: важность эффективного охлаждения ПК — Intel

Если хотите, чтобы ваш ПК работал максимально эффективно, вам нужно больше узнать об охлаждении1 2.

Если хотите, чтобы ваш ПК работал максимально эффективно, вам нужно больше узнать об охлаждении1 2.

Собирая ПК,нужно уделить особое внимание системе охлаждения.

Это не секрет для тех, кто уже собирал компьютер. Однако им тоже будет полезно узнать, почему охлаждение — это неотъемлемая часть любой сборки, ведь новые знания можно затем применить на практике, в новых сборках.

По сути, все просто: комплектующие ПК при больших нагрузках (таких как игры) выделяют тепло. Перегрев компонентов может привести к снижению производительности. Идеальная сборка — это достаточное охлаждение всех компонентов и максимальная производительность системы.

Во время работы аппаратного обеспечения постоянно выделяется тепло, однако слишком большое его количество может замедлить работу системы.

Читайте также:  Сравнение смартфонов huawei honor 8 и samsung a5 - что лучше?

Например, если температура процессора слишком высокая, срабатывает механизм защиты: производительность снижается, чтобы не повредился процессор.

Марк Галлина (Mark Gallina), архитектор систем охлаждения и механических систем корпорации Intel, заявляет: «Процессоры Intel® имеют очень надежные функции управления охлаждением, которые позволяют быстро изменить рабочие частоты для снижения энергопотребления при недостаточном охлаждении системы».

Этот механизм безопасности иногда называют динамическим масштабированием частоты. Он помогает защитить процессор от возможных повреждений. Однако такая защита работает в ущерб производительности. Поэтому, прежде всего, следует поддерживать такую температуру процессора, при которой не запустится этот механизм.

Многие ноутбуки на базе новейших процессоров Intel® Core™ оснащены функцией Dynamic Tuning. С помощью искусственного интеллекта она предсказывает нагрузки на ЦП и либо повышает, либо понижает его производительность, адаптируя работу процессора к меняющимся условиям. Система все делает автоматически, без каких-либо действий со стороны пользователя.

Существует множество способов охлаждения процессора, от использования минерального масла до систем пассивного охлаждения, но самые распространенные решения — это воздушные и жидкостные системы охлаждения.

 Благодаря широким возможностям этих систем охлаждения их применяют практически везде: от настольных ПК до портативных систем.

Обычно для небольших корпусов ноутбуков проектируют специальные системы воздушного охлаждения, которые, как правило, нельзя заменить или модернизировать.

Для хорошего охлаждения также крайне важна термопаста, поскольку именно она находится между процессором и его системой охлаждения.

Однако следить нужно не только за температурой процессора. Графический процессор — еще один важнейший элемент игрового ПК, для которого тоже необходимо хорошее охлаждение.

Системы охлаждения графического процессора устанавливаются предварительно и обычно состоят из вентиляторов в кожухе, обрамляющем графический процессор. Кроме того, существуют такие решения, как блоки жидкостного охлаждения и модифицированные системы воздушного охлаждения.

Их обычно используют опытные пользователи, которых не пугает необходимость разобрать графический адаптер, чтобы заменить систему охлаждения.

Прежде всего нужно позаботиться о температуре ЦП и графического процессора, поскольку именно они обрабатывают большую часть информации в игровом ПК. Однако есть и другие компоненты, о которых не стоит забывать.

Любой компонент ПК, который потребляет электричество, то есть буквально каждый, выделяет тепло в процессе работы. Большая часть компонентов уже оснащена системой охлаждения.

Обычно ОЗУ поставляется с металлическими радиаторами для рассеивания тепла, а блоки питания — с вентилятором.

Даже системные платы оснащены радиаторами для сильно нагревающихся элементов, а современные варианты иногда оснащаются теплозащитными экранами для накопителей M.2, чтобы предотвратить возможное замедление системы из-за перегрева.

Однако отвести тепло от компонентов — это только часть работы. Когда все они рассеивают тепло в одну небольшую область, например, в корпус ПК, температура внутри резко повышается. Если корпус не вентилируется должным образом, скопление горячего воздуха может привести к перегреву системы и, как следствие, к снижению производительности.

Именно тогда на первый план выходит вентиляция.

Почему важна вентиляция

Хороший корпус для ПК обеспечивает качественную циркуляцию воздуха благодаря либо оптимальному расположению вентиляторов, либо тому, что пользователь сам может регулировать вентиляцию. Многие корпуса поставляются с уже установленными вентиляторами.

Если же корпус без вентиляторов, то обычно их можно установить спереди, сзади или ближе к верхней крышке корпуса.

Вентиляторы для ПК сильно разнятся по конструкции и размеру: от обычных с диаметром 120 мм до более специализированных решений различного размера, глубины, уровня шума и дизайна.

Все корпусные вентиляторы выполняют одну и ту же функцию, но вентиляторы различных типов имеют и различную специализацию.

Например, вентиляторы, использующие статическое давление, предназначены для перемещения небольших воздушных масс на короткие расстояния. Они отводят тепло как радиаторы.

Также существуют более мощные вентиляторы, которые предназначены для перемещения больших объемов воздуха.

Обеспечивая вентиляцию, учитывайте, что вентиляторы для ПК пропускают воздух через корпус двигателя, соответственно, наклейка, фирменная символика, проводка или защитная решетка будет, скорее всего, расположена на задней стороне вентилятора. Установите вентилятор корректно, так как именно с этой стороны будет выходить воздух.

Положительное давление воздушного потока и пыль

Когда вентиляторы забирают больше воздуха, чем выдувают, возникает положительное давление. Когда вентиляторы выдувают больше воздуха, чем забирают, возникает отрицательное давление.

При отрицательном давлении в системе забор воздуха происходит через небольшие зазоры и вентиляционные отверстия в корпусе. Таким образом, вместе с воздухом в корпус попадает и пыль.

В этом случае для оптимальной работы системы корпус придется чистить чаще.

Если давление в корпусе положительное, то внутрь будет проникать меньше пыли, так как воздух будет выталкиваться изо всех зазоров и вентиляционных отверстий.

Пыль все еще может попасть внутрь из-за всасывающих вентиляторов, но грамотное размещение фильтров поможет этого избежать.

Положительное давление воздуха способствует уменьшению общего количества пыли, поскольку она концентрируется на фильтрах, которые можно очистить перед началом работы с ПК.

Как было сказано выше, высокое положительно давление создает ситуацию, при которой вентиляторы мешают работе друг друга, поскольку перемещают воздух внутри ограниченного пространства корпуса.

Оптимальное решение — это баланс с немного более высоким положительным давлением, которое поможет снизить количество пыли в корпусе.

Во время сборки пользователи могут поэкспериментировать с положительным и отрицательным давлением, меняя положение, ориентацию и скорость вращения вентиляторов в корпусе, чтобы подобрать оптимальное решение для своей сборки.

Для обеспечения оптимальной циркуляции воздуха будет полезно изучить другие сборки, в которых используется такой же корпус. Онлайн-сообщества хороши тем, что дают возможность задать вопросы и найти системы с похожим аппаратным обеспечением. Будет полезно изучить эти сборки, а также системы вентиляции, которые в них применяются, чтобы затем использовать уже для своей сборки.

Если правильно установлены вентиляторы и другие необходимые системы охлаждения, проблема высокой температуры практически решена, однако есть еще факторы, которые могут негативно сказаться на температуре системы.

  • Размещение аппаратного обеспечения. Определите, в каком месте на системной плате устанавливается тот или иной компонент. Например, если поместить твердотельный накопитель M.2 непосредственно под графическим процессором, то накопитель окажется на пути горячего воздуха от графического процессора, что совсем не хорошо. Из-за размера системной платы вариантов расположения компонентов может быть меньше, но даже в этом случае старайтесь оптимальным образом установить систему охлаждения.
  • Система проводов. Провода должны быть аккуратно уложены, чтобы они не спутывались. Таким образом, ваш ПК будет не только лучше выглядеть, но и лучше вентилироваться. Это особенно актуально для сборок в малом форм-факторе, где важнее всего пространство. Воспользуйтесь преимуществом системы укладки проводов вашего корпуса. Также рекомендуем использовать модульный источник питания, который позволит избавиться от лишних проводов.
  • Чистота. Большие скопления пыли могут привести к проблемам, например, могут образоваться засоры, из-за которых вентиляторы не будут работать на полную мощность. Как было указано выше, следует создать положительное давление внутри корпуса. Также рекомендуется каждые несколько месяцев разбирать системный блок и тщательно очищать систему сжатым воздухом. Всегда обращайтесь к соответствующей документации, чтобы правильно разобрать системный блок и очистить систему, не нарушая гарантийные условия.
  • Температура в помещении. Конечно, не стоит постоянно держать кондиционер включенным, однако высокая температура в помещении может привести к перегреву ПК. Помните об этом при выборе системы охлаждения, если проживаете в жарком климате.

Чтобы надлежащим образом организовать систему охлаждения, нужно заранее все продумать, однако если при сборке ПК следовать приведенным выше указаниям, вам будет проще. Правильно организованная система охлаждения, в соответствии с конкретной конфигурацией аппаратного обеспечения, позволяет поддерживать оптимальную температуру всех компонентов.

Тщательное планирование системы охлаждения ПК — это не просто положительная практика. Это еще и залог максимальной производительности вашего ПК и продление срока службы компонентов.

Ссылка на основную публикацию
Adblock
detector